The mathematics of vampirism


  1. Each vampire must suck the blood of one human per day.
  2. Each human who has their blood sucked by a vampire becomes a vampire.

Current world population: 7.1 * 1012 

Let vn be the number of vampires in existence n days after the appearance of the first vampire(s).

Since each vampire turns one human per day, it follows that over the course of 24 hours, the population of vampires will increase by the value of vn at the start of the day in question, and the population of humans will decrease by the same amount. In other words:

vn+1 = 2vn

=> vn = 2vn-1

Proposition: vn = 2nv0

Prove for n = 1:

v1 = 21v0

v1 = 2v0

which is true, as it satisfies the statment that vn = 2vn-1

Assume true for n = k:

vk = 2kv0

Prove true for n = k + 1:

vk+1 = 2k+1v0

vk+1 = 2k * 21 v0

vk+1 = 2 (2kv0)

vk+1 = 2vk

which is true, as it satisfies vn+1 = 2vn.

Thus, we establish that, if the proposition is true when n takes any value k, it is also true when n takes the value k+1. We have also proven it to be true when n=1, thus it is true for all value of n.

When vn =  7.1 * 1012, all humans will have become vampires and thus humanity will be extinct. The value of n at this point gives the number of days humanity endured.

Let v0 = 1.

vn =  7.1 * 1012 

2nv0 =  7.1 * 1012 

2n = 7.1 * 1012 

n = log2(7.1 * 1012 )

n = log10(7.1 * 1012 ) / log102

n = 42.69

Thus, if a single vampire came into existence, all humanity would be exinct within 43 days. This also works for zombies, by the way – however, zombie movies tend to base their entire plots around this rapid expansion.

Powered by Blogilo


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s